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MULTIVARIATE GENERAL SPATIAL THREE-STAGE LEAST
SQUARES FIXED EFFECT PANEL SIMULTANEOUS MODELS
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Abstract: Simultaneous equation models describe a two-way flow of influence among variables. Simultaneous
equation models using panel data, especially for fixed effect where there are spatial autoregressive and spatial
errors with exact solutions, still require to be developed. In this paper, we develop the new models that it
consist of spatial autoregressive and spatial errors. We call it as general spatial. This paper proposes feasible
generalized least squares-three-stage least squares (FGLS-38LS) to find all the estimators with exact solution
and the numerical approximation estimators by concentrated log-likelihood formulation with method of
forming sequence. All proposed estimators especially for closed-form estimators are proved to be consistent.

Key-Words: spatial autoregressive, spatial error, general spatial, FGLS-3SLS, concentrated log-likelihood,

consistent

1 Introduction

If the model contains spatial influence and the
spatial influence comes only through the error
terms, we can use spatial error model [1]. Moreover,
if the model contains spatial influence and the
spatial influence comes only through the dependent,
we can use spatial autoregressive model [2]. Now,
we develop the paper where there are spatial
autoregressive and spatial errors. The new models
include two spatials, namely spatial autoregressive
and spatial error. We call it general spatial.

System methods are the methods which are much
more efficient than the single-equation methods
because they use much more informations [3].
Single-equation methods and system methods are
two methods which it can be used to find the
estimators of parameter in simultaneous equation
models [3].

Estimators of three-stage least squares (3SLS)
are more robust than other estimators, like full
information maximum likelihood (FIML) [4].
Consequently, solution technique by means of 35LS
is much more advantageous than the one by FIML
because it is both time saving and cost saving.

In this solution, we still use first-order queen
contiguity to find row-standardized spatial weight
matrix [5] and Moran Index to examine spatial
influence [6-8]. Some papers about estimation of
parameter in simultaneous equation models for fixed

effect are revealed in [9], and [10]. But, estimating
these parameters had done by simulation.

In this paper, we are motivated to develop
simultaneous equation models for fixed effect panel
data with one-way error component by means of
3S5LS solutions, especially for both spatial
correlation among dependent variables and spatial
correlation among errors. We call it as general
spatial.

The objective of this paper is to obtain the
closed-form estimators of parameter models by
means of feasible generalized least squares-three-
stage least squares (FGLS-3SLS) and the numerical
approximation estimators of parameter models by
means of concentrated log-likelihood formulation
with method of forming sequence. And then, to
prove their consistency, especially for closed-form
estimators.

2 Models Development
We had an equation by [2], namely
Yo =1y, + X0, + Y B, +1y, +u,, (D
for A=L23,-.m,
denotes the jth time period Ath endogenous vector,
X,, denotes the jth time period Ath matrix

j=123,-T, where y,

including (for example £,) exogenous variables,



Y , denotes the jth time period —Ath matrix

including endogenous explanatory variables except
the jth time period Ath endogenous explanatory
variables, g, denotes the Ath mean parameter, a,
denotes the #th parameters vector of exogenous
variables, B_, denotes the —ath parameters vector
of endogenous explanatory variables, y, denotes

the jth time period Ath time specific effect
parameter, 1 denotes the unit vector, u, denotes

the jth time period hth random error vector
assuming mean vector 0 and covariance matrix
o1, (homoscedasticity) in which o} denotes the

unknown Ath error variance and I, denotes the
mxn identity matrix. There is one restriction,

T
namely Z 7, =0. In this context, we suppose that
J=1
(1) are over identified.
The next model is general spatial model (GSM)
which refers to [11], namely:
y=1u+ Xa + pWy +1,
u=AWute, e~ N(0,07L,), @

where y denotes the endogenous vector, X denotes
the matrix of observations including (for example
k) exogenous variables, g denotes the mean
parameter, o denotes the parameters vector of
exogenous variables, p and A denote the spatial
autoregressive and the spatial autocorrelation
parameters, respectively, W denotes the row-
standardized spatial weight matrix, and W denotes
the spatial autocorrelation of random error vector,
and & denotes the random error vector assuming
normal distribution with mean vector 0 and
covariance matrix o’l in which o® denotes the

unknown error variance.

If (1) contains spatial influences and the spatial
influences come through the endogenous and the
error variables, then we can adopt models in
equations (2} and obtain new form equations as
follows:

Yo =1y, +thu,, +phWy,U. +Y_hjﬁ_h "‘17’;7; +u,

€))

u, =4 Wu, +s,, £, ~ N0,0;1L).

Equation (3) can be simplified as follows:

Ay, =1, +X, 0, +Y B, +1y, +B)'s,, (4)
for h=1,2,3,m, Ji=L23,-.T, where
A =L -pW, B, =I -AW, p and A, denote
the /th spatial autoregressive and the Ath spatial
autocorrelation parameters, respectively, and u,,

denotes the jth time period #th spatial
autocorrelation of random error vector, and e,

denotes the jth time period hth random error
vector assuming normal distribution with mean
vector 0 and covariance matrix o.1,. There is one

T
restriction, namely Z Vi =0
J=t
We refer to [12] for the properties of kronecker
products, [13] for reparameterization, [3, 4, 14] for
3SLS estimation, [15] for GLS and FGLS, [5] for
the use first-order queen contiguity to find the row-
standardized spatial weight matrix, [6-8] for
examining spatial influences by means of Moran
Index and [16] for consistency.
For the solution of (4) by 3SLS, we obtain the
following equation:
XAy, =Xy +XX, 0, +XY, B, )
+Xi1y, +XiB,'g,,.
We use average value approach of the matrix of
observations [1, 17, 18] because the estimator of the
mean is unbiased, consistent, and efficient as

revealed by [3, 4, 19]. If we use Xij then the

I
restriction Z}/hj =0 will not be achieved. This is
J=1

due to X, having in general, different values of the
matrix of observations in every jth time period [1, 7,
17, 18].

We can rewrite (5) to obtain new forms of
vectors and matrices as follows:

X.Ay,=X.Gu+X.Z 8+X.Gy, +X.B.g,, (6)
where Zj=|:Xj Y~J:| and 6’:[(1’ : Bi]

having dimensions mrx (Zkh + mm— 1)) and

h=1

(Z k, +m(m— 1)) x 1, respectively.

h=1
Explanation of the vectors and matrices from
equations (5)-(6) are X.. denotes the mnxmy k,
A=l
diagonal matrix whose submain diagonal is X.,

% T 12t
X.= %ZX* ; where X, denotes the nx> k,
=

Bi=t
matrix including all the exogenous variables in the
system, A denotes the mm=xmn diagonal matrix
whose submain diagonal is the »xn matrix A,

y, denotes the mnx1 vector including all of the

nxl vectors y,, G denotes the mnxm diagonal



matrix whose submain diagonal is 1, B. denotes
the mnxmn diagonal matrix whose submain
diagonal is the nx#» matrix B;', p denotes the
mx1 vector including all of g, X, denotes the

i
mnx Yk, diagonal matrix whose submain diagonal
h=|

is the nxk, matrix X,, a denotes the ikhxl
A=l
vector including all of the &, x1 vectors @,, Y_,
denotes the mmxm{m—1) diagonal matrix whose
submain diagonal is the nx(m—1) matrix Y_;;, B_
denotes the m(m—1)x1 vector including all of ihe

(m—~1)x1 vectors B_,, v, denotes the mx1 vector
including all of 7, and €; denotes the mnxl
vector including all of the nx1 vectors &, as well

as n denotes the sampel size of observations. For

T
7T, the restriction Z 7y =0 is changed
=

j =152!3’...5

3 Estimating the Parameters

Now, we consider the equation (6). Estimation of
parameters models are conducted in three stages. At
the first-stage, we estimate all the endogenous
explanato y variables in the system in every time
period. This first-stage is the same as the previous

paper [2].
At the second-stage, we estimate parameters of

#,,9,,p_,, and y, to obtain residual estimate of

equation {4). Because equation (4) has non-
homoscedastic error, we first tranform this equation.

var (B;lshj) =0, (BLB ) #o0.1 .  Premultiplying

1
(4 by ;' (B},B,,)2 , we obtain

1 1
(BLBﬁ )2 ALYy = (B B ) ll/-‘h +(BLB}:)2 th“]h
+ (BLBH )? Y_B,+ (B;rBh )-2- 1y, (7
+(B,B,)? B;'z,,.

We can omit the value of o} because it is a finite

constant. Now, the equation (7) has satisfied a
regression model requirement.

We then substitute Y

Y, = Y_,y. + V_,,j .

from the first stage, and obtain new equations as
follows:

(8,B, ) Ay, =(B, B,,) L, +(B;B,,)§ 7,9,
+(B;,B,,)E 1y, +u;,j.,

where Z,, =|:X,y. : \"E_,y.] and 0, =|:a§, 3 ﬁ[,,:l

nx(k, +m—1) and

1%(k, +m—1), vespectively, and u,; denotes the

by ‘f(,hj in (7), where

where V. i

—hi

is residual estimate

&)

having dimensions

random error with

,=(B,B ) V.,.B_ ,,+(BB) Bs,.

The right-hand side matrix of equation (8) is less
than full rank. But, we can not use #nxn
dimensional transformation matrix Q directly, in
which Q1=0, to find the estimator of 6,. We

composite

1
remind again that Q =1, ——11" is symmetrical and
n

idempotent matrices.
We need to reparameterize equation (8), namely:

i f)
(B,B,)? Ay, =(B;B,) 14, +(B;B )2 Z,9,
+uy, %)
where g, =4, +¥,,.

By GLS Solution, we first get the estimator of 4, .
namely

4, =('B,B,1) I'BB,(Ay, -Z,8,) (10)
We then use (10) to find estimator of @, and by
GLS solution, we obtain

- T
8, =[Zz;jB;?B,, [1b; -1, ]z
=
x iz‘m_B’ B, [1b} -
J=1

where b;, =(1r B;B,,,l)—l I'B,B, having dimension

Ixn
We recall to equation (8) and use the GLS
solution, we obtain the estimators of g, and y,,

-1

(11)
:I wY o

namely
" 1.,
Hy =?b Z( a¥n ) (12)
=t
and
?7;;; =b, (Athj _lﬁh_zkjek)' (13)

respectively.



From (11) to (13), we can estimate u:!j as follows

ﬁ;y = Ahy.lg,-‘ —l(ﬁh + ?;.'y)_zweh = Ahy}y' ““é.uj- (14)
Matrices of A, and B, contain p, and A,. In case
p, and A, are not known, we can estimate it by

means of concentrated log-likelihood.
We pay attention to equation (4). Premultiplying
its both sides by B,, we obtain

BhAhyly = Bfrllufl +B.F1Xfyuh + BhY—fy'ﬁ—k
+B,1y, +g;, {(15)
By equation (15), the likelihood function of g,

ji=123,--,T, denoted by L,

r n
VIS H(Zn’oﬁ) 2 exp[—-—l—z— €8, » and by
gl 20,

Jacobian transformation, we obtain the natural
logarithm of L, as follow-

is as follows:

InZ, = ——1n(2;ro‘,, ) _H ;(BhAhy,ﬁ B,a, )r
% (BhA.&yhj - Bhahj) +Tn|B, |+ Tn|A,],
where ||A,] and |B,| are the absoluie of the
determinants of A, and of B,, respectively.
We take derivative for o;. Setting this derivative

equal to zero, we obtain the estimator of o7,
namely:

T
62 =%2}(BﬁAhyhj -B,a,)
=
(Bh Ay, - Bkahj)‘

By (18), we obtain concentrated log-likelihood as
follows:

(16)

T r (1~ !
mI=C —%m(EZ(BhAhyhj ~B,a,)

J=l

x(B, Ay, ~ B2, )+ Tin[B,| (17)
+Tln||A,,||
where C = ——]n(27:) - E
2 2

Let W have eigenvalues a,@,,-,@,. The

"

acceptable spatial autoregressive and spatial

- <p,{4)<1

[20]. We use numerical method for nZJ" to find
estimators of p, and A,, namely method of forming

autocorrelation parameters are

sequence of p, and A, by means of R program [I,

7,17, 18]. Its procedure is as follows:

l. We make sequences values of p, and 4,
respectively, namely

£, =seq(start value, end value, increasing), and
A, =seq(start value, end value, increasing).

2. For every y,; and a,, k=1,2,3,---m, we insert

values of p, and 4, in (17). Because the values
of a, are unknown, we use the estimator, a,,

where a, =1(4, +7,)+Z,9,, with
z,=[X, i ¥,].

3. Finding the values of p, and 4, that gives the
largest InL}".

Based on the estimate p, and 4,, the
equations (11) to (13) can be rewritten as follows:

[ZZ’ BB, [1b; -—In]Zth

(18)
xZZ’ BB, [1b;, -1, ]Ay,,
i=1
lj a ~
b =mb Ay ~2,8,) (19)
J=1
and
Vh,. =b, ( Yy lﬂh_zfyeh)a (20)
respectWeiy, where
A =1, -p,W, B =] -4, W, and

b, =(1' B;,B,,l) I'8,B,
The furthermore, equation (14) can be rewritten as
follows:

g, =Ay, ~1{4, +7,)-7,8,=A,y, —4,. 21
We then use (21) and (16) to find the estimated
covariance matrix of the estimator ﬁ:,j., namely

[ a2 ~ ~ ~ ]
1 17 P Fim
o I‘2 ~ -
21 Z 0-23 O.Zru
-
1 oa o ~n o nZ A apy gt
L=\6, &y, 6 Oy |5 On =Ty ith=h
~ A A ’\2
__O-ml a—mz GmB w
with

~

5 n»llr lB L
oW T Tln-1)- (k+m 1)Z b

where &, denotes the ith estimated error variance,
&, denotes the A'th and the #th estimated error

covariance, and X denotes mxm estimated
covariance matrix. We change the denominator of
(16) so that it becomes an unbiased estimator [18].



From (6), we have an error covariance matrix,
namely var(i’..ﬁ.a J.) =XLB, var(e, )B.X.. = L,.
This covariance shows that the random errors are
where Var(a j) w (z jz-:j.) for
h=h =1,2,3,+,m
e =g, =, &, - =]

S;y =|:g}|lj Eha; Eway giu_ij]’

in which we assumed that

e, ifi=i
E(S””g""'f)_{o if i

E(ahfa:;' i ) = Gf,f,'lli' We obtain

heteroscedastic,

S0 that

Var( ) L®I, with mmxmn as its dimension.

Consequently, Z, =X.B.(Z®1,)B:X.. which is

mZk,, x mZk

A=l
unknown then we can use its estimator. If we use its

estimator then £, = X..B. (fl ® I”)ﬁi)_(“.

In the above results, we see that the error
varisnce in equation (6) is not constant and the
matrix in the right-hand side is less than full rank,
For the last-stage, we overcome those problems
again by means of reparameterization and GLS. The
estimators are as follows:

symmetrical matrix. If X is

-1 =
é:[iz‘ﬁ‘m*zj} ZivrAy, @)
ﬁz[TG‘I:I'G:I_lG’I:I'i(Ay ,-Z8), @)

-Gji-Z é). (24)
where
H =X.2'X, and
) B} -1 Tk
M =G[G'H'G] GH -1,
They have dimensions i x mn, respectively.
In this paper, the estimators of 0,4, and y, are
called the estimators of feasible generalized least
squares-multivariate general spatial three-stage least

squares fixed effect panel simultaneous models
(FGLS-MGS3SLSFEPSM).

4 Properties of Estimators
Theorem (Consistency). if
X.Ay, =X.Gp+X.Z 0 +X.Gy, +X.B.g,

as defined in (6), then 6, B, and §, are consistent

estimators.,
Proof. Recall (6). This can be rewritten as
=Gp+Z 0+Gy, +B.g,. However, we use the

estimate p, and 4. The equation (6) can be
rewritten as ;&yj =GPu+Z0+Gy; -1-]':’..3}..
Estimators of equation (6) are as follows:

-1
=[§T:zjﬁ‘1\7rz_f} iz;ﬁ*M‘ij

J=1 4=
r A M R
=0+ [Z ZHM'Z j} [Z z;H‘M‘B*aJ},
=l J=l

where M'G = 0,

i=[TG'H G] ’1"{‘ Z,6)

l T
8- 9)+ZG’ ‘B .s}
1=

=u+[TG'HG] ¥ G

1
where Zy , =0, and
=l
¥, =[G'131*G]'1 G'H (Ay,-Gi-2 0)
=(u-)+[GH'G] GHZ, (0-8)+y,

+[¢'irG] ¢'ir'Bue,

We refer to [3, 4, 14, 16: 21-23]. Asymptotic
expectation and variance of 8, ji, and ¥, are as
follows:

E{8}=lim £{6} = e+mE{[-——Zz'HMZ T

T'—ae0 T2

1 I
— > Z W M'B.e,
frgeiess |
-1
=G+[limLK} {hm—Zz'HMB XO]

=y nT n—=® nT =

T»w T30

-1
—e+["1ggx} x0= e+[1<] x0
T—0

E

where K and K are constant nonsingular matrices.



where H' and H'M® are symmetrical Now,
limasy. var{ } |:ZZ‘H M'Z, } [ZZ’ M'B.
T 4
{Ilm—(ﬂ@l B HM'Z ]
romnl
[hm—ZZ‘H MZ, }
el e
lim asy. Var{ } [K]_i |:ZZ’H M'B. x0
T L
xﬁiﬁ'M‘ZJ][lijl;ﬁ:l
=0

=K x0x[K] =0,

This shows that @ is asymptotically unbiased
estimator, If m—»w or T—>c or both of n-—>

and T —> o, then asy.var{ﬁ} — 0, Therefore, 0isa

consistent estimator. Next,

E{f) = lim £ (i)

1 .
=p+| im—|-G'H'G GH'Z
"{ﬁ%ﬂ o ] J(Z
[ J+hmZGHBE{ N
'%32 =
1
=p+| lim—— G'HZ (00
u+[;£%nT[n } J[Z] )
+hmZG H'B, %0
T 4L
_p+(;%-;—[K ] (0+0) I,

where K, and K, are constant nonsingular
matrices. We have

asy.var{fi} = asy. var{[TG A G:I
G

LY - T Fo ]
+asy.var{[TG’H lZ:G‘H B*E‘,},

J=1

{ZG A'Z  asy.var {8} 2

asy.var {[TG‘IAJ‘G ]_]

]
asy.var{[i‘"G’I:I*G]_l iG‘I:I*Z Jﬁ} = [T G'I:I'GT

A=
T—mw

A0
T

A - T A " A
lim asy.var{[TG'H I ZG‘H ZJ.B}

;| limasy.var {B}J

—llm— K GHZ xOxZ'HG
’%ZZ”T ] [Z }
x lim —| K
imirlE)
=0x0x0=0.
‘r ~ -
limasy.var{[TGHG] ZGHB
e =
[GHG G'O'B {hm— (zo1, }Biﬁ'G}
nenl
[hm GHG}
o 1t

-1
=[K,J'[ GHB.x0x BH'G] I:lim K, }
-

=K“x0x[]_(:| =0.

Consequently, 11m asy. var{ }

T—boc
This shows that ji is asymptotically unbiased
estimator, If #—> or T— o or both of n—o0
and T —>co, then asy.var{fi} - 0. Therefore, f is
a consistent estimator, Now,



E{"?j}:,l,ijﬂ E{i’;‘}
T—rm

= [p ~ lim E{ﬁ}} + [G'ﬁ*G]“ GH'Z,
T—oa

=00
T

x[ﬂ—lim E{e

e
T—rox

. LS e T
}]+yj+l1m—[—GHG}
e AN/

xG'H'B.Ee,}
E{y,}=(n-m+[K] G'HZ, (6-8)+y,
+lim 2[R, T GHB. x0

nre B
T—oc

=7,
asy. var{ﬂ}j.} = asy.var{(p - fl) + [G'ﬁ‘G:I_]
xG'H'Z,(6-6)+7,
+[GH'6] GHB.e J}
=asy.var{ji
+asy.var [G’ﬁ*GT G’I:I'Z‘ff)]
+asy.var [(?«’I:I*G]-I G’I:I'ﬁ*sj}.
asy.var {[G‘I:I'G ]_] GH'Z jﬁ}
= [(;’I:I"GT1 G’I:I*Zjasy.var {é}
<ZHG[GHG],
asy.var{I:G‘IZI'G]—l G’I:I*l"}*aj}
-[cHc] ¢HB.(xo1,)
xBA'G[GHG] .

n—®
=

lim asy. var {[G‘I:I'GTl GH'Z ]ﬁ}

[Gfﬁ*g ]‘1 Gﬁfpzj [,1,22 asy.var {é}]
T

xZA'G[GHG]

[K,]'G'H'Z,x0xZA'G[K,]'

k]

Ny
T

lim asy. var {[G'f{'G ]_] G'H'B.e, }

30
T—p0 1l

-[e'A'c] G, {lim L(zel,)
-1

. ]. 1 Lo
lim=—G'HG
2T a

xBHG

-1
=[K,] G'H'B. x0xBIA'G [}me -l-k'l}
T—w
=0x{0]" = oo (infinit),
therefore, convergenity be satistied only if #—»co,
namely

lim asy. var {[G’I:I“GT G‘I:I'ﬁ,sj]

H—rn0

B [Grf{*g]”‘ G'H'B. {uml(z ®1I, )}

s g

-1
x ﬁtﬁ‘G[lim lc’ﬁ“c}

H— 1y
GNPl o L] 5 — 71
=[K,]" GiT'B. x0x BI'G[ im K, |
- - n—rx
=K' x0x[K, ] =0
Consequently, limasy. var{"f' j} =0.
This shows that §, is asymptotically unbiased

estimator. If w-»oo, then asy.var{'?j}—m.

Therefore, ¥, is a consistent estimator.

5 Ilustration
Suppose there are three endogenous variables
YV Vs and six  exogenous  variables

Xy1> X125 X5y Xons Xys X3, Observed for two time
periods and the number of observation being 10
locations. We use illustration of data, locations, and
row-standardized spatial weight matrix as it was
presented in [2]. The equation models are as
follows:

Mg = Hy o Xy T X, "'le:yU + B2V,
+ By + 70+ thy

Yoy = g F 00y X5, + Wy Xany +pzw,r'ij + ﬂ21ylij
t By Yoy T Vo Ty

Yy = Myt Oy Xy o+ O X 'J"p3wf'Y3j +ﬁ31y]|_'f (25)
+ﬁ32yzg' R ETRUR T



{ 2
, = /'lqw,uu +&,, &, ~ N(O,o‘, ),

= ! _ z
Uy, _ﬂ?wiuzj + &5, &y N(O,o-z),

uy, = LWy, ey, £~ N(O,a’f),
where
Wy Wy W Wi W,
Wy  Wp Wy 0 Wy W
W= w,  wy, wyy e W =S| Wy
[ Wior Wiz Wios 7 Weao | | Wi

=[w], i=1,23,,10,
The formulation of Moran Index is as follows:
10 10
L ;Z}wﬁ. (yhr'j _J_’hj)(yh,.-j —Vy ) : y;Wy;j
H 10 -
Z(J’mj -7, )2 Yu¥uy
i=l

for h=1,2,3, j=1,2,

E)

_ 1 19 3 _
where =Ezyh,, and y,, =y, — ¥yl
i=1

If there is at least one [, >E(I), then we

conclude that there is a spatial influence for the
equation models.
v, =15.80; 7, =28.30; ¥y, =24.90;
¥, =28.40; ¥, =2590;
1,=-02442; 1, =0.0539; 1, =0.4586;
I,=-0.2317; 1,, =-0.0878; I, =-0.1078;
-1 -1
d E(I,)=E(])=~u=———=0.1111
and £(1,)=£(7) n—-1 10-1
Based on the above result, by means of R Program
version 3.6.1, we obtain that there is a spatial
influence for the equation models,

We then continue to estimate parameters by
means of FGLS-3SLS. For the first-stage, we
estimate all the endogenous expalanatory variables
in the system in every time period and the results are
presented in Table 1.

For the second-stage we estimate I,. But, we
first estimate both of spatial autoregressive and
spatial autocorrelation by means of equation (17).
By W matrix, we have the acceptable spatial
autoregressive  and  spatial  autocorrelation
parameters are —1.6242 < p, (4,) <1. By method of
forming sequence both of o, and A4 with
increasing 0.01 we obtain
1. p,=seq(-1.6142, 0,99, 0.01)and

2, =seq(-1.6142, 0.99, 0.01).

2. For every y, and a,, h=123 we insert
combination of all possible values of p, and A,
to (17). Because a,, is unknown, we use the

estimate 4&,, where ﬁ,ﬁ=1(ﬁh+}9,y)+z,déh,
with Z, =X, i ¥, ]

3. We 5 =-1.6142, A =09258,
P, =-16142, i, =-02242, p,=-15742, and

~

A, =0.4658 those give the largest In L™, In LY
and In 3", respectively.

obtain

Table 1 Estimated values for endogenous
explanatory variables
Endogenous explanatory

. Loca- variables
Time .
t1on i Yo Vs
estimate estimate  estimate
1 1 16.5625 26.5828  21.7290
2 15.0373 28,5890 251588
3 16.1904 27.6672  20.7955
4 12.3775 26.0621 23.9145
5 16,1804 28.3403  22.0819
6 172918 26.9959  24.8593
i/ 18,7007 29.1060  26.5129
8 12.3543  31.5231 28.7592
9 16.4805 31.4345 30.8012
10 16.8246 26.6991  24.3877
2 1 15.5100 259073  23.1069
2 17.3247 27.0314  24.7638
3 15.8433 26.3597  22.8089
4 13.3019 254562  21.0773
5 17.3259 29,7492  27.8872
6 18,1930 30.2621 28.3106
Ui 18.0785 31.1379  29.8797
8 14,7653 32.0924  30.1569
e 149671 293371  27.3870
10 18.6902 26.6667  23.6217

By sequences of p, and A4, with increasing
(.01, we can also make graphs among the values of

rho, lambda, and the values of concentrated log-
likelihood as presented in Fig. 1.



As we need to know in Fig. 1, rows are the points of
Graph of function InLcon1 of rho1 and lambda1 rho that its values are seq(-1.6142,0.99, 0.01),
columns are the points of lambda that its values are
seqf-1.6142, 0.99, 0.01), and value is the value of

A E
/ N Inl.con. There are 261 points both of rho and
‘/' lambda. Its points are 1,2,3, untill 261.
o -
:} 1 Table 2 Estimate values for residual errors
. i| L ﬂf I g Lo Lo Residual errors
R ™ 200 tion i e for
g . 150 cstimate estimate estimate
s 7 1 1 530.9617 36731  -20.1653
¥0 50 100 150 200 250 300 © 2 634.4891 123.6771 -30.2136
columns 3 708.4265 -83.8497 20.1640
4 821.6256 69.4616 11.7260
5 677.8279 -63.3284 14.2880
6 612.9724 93.3877 78.6841
Graph of function InLcon2 of rho2 and lambda2 7 i i S2.EDI
8 570.8471 2454605  -133.6357
24 il 9 609.1129 280.6660 10.3691
ya oo 10 560.6974 109.3295 574756
i ‘ yd | 21 10212697 -122.8737  58.6738
3 r i { 2 1,0055465  -99.2300  60.9696
8| [ gy 3 973.8582 -236.6423  73.0186
3 g : f«" 250 4 9450748 2800563 733787
" g ; g 150 5 7481006 33.4929  -10.1951
2 b ot 0 6 846.8442 254341 162969
S0 50 100 150 200 250 %00 7 828.7046  73.9246  -26.9565
columns 8 801.7122 79.0934 -50,7021
9 9279174 -78.3885 -50.9108
10 932.3442 -215.1956 104.0915

Graph of function Inl.con3 of rho3 and lambda3
From (18) to (20), we obtain

fy =59.8488; i, =357021; 4, =302172;
A e 7, =-4.7589; 7, = 4.7589;
. =3.0530; 7, =-3.0530;

g | }L 7y =1.2893; 7,, =-1.2893.
g %l ') - . = e, 7.5482
g 8 v _—2 260 2 o, =
2l ] § ___—.'1‘ 035000 0= |= o :
3 - , B, 1 | 348812
20 50 100 150 200 250 300 0 B-I P

B 3.1676

columns

Fig.1: Graphs of function of rho and lambda
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Next, from {21) we obtain the estimate values for
residual errors being presented in Tabel 2. We then
use the estimate values for residual errors (in Table

2)to find I as follow:
16,407.7430 -13,327.4840  3,586.3450
£=(-13327.4840 55,037.3740 -6,806.3970 |,
3,586.3450  -6,806.3970 8,201.1720
and we obtain
[ 95,015,762,019 112,938,200,311

112,938,200,311 134,249,432,552

2, =| 95,961,464,592 114,062,507,032
| 3,116,649,203  3,704,593,381
95,961,464,592 3,116,649,203
114,062,507,032 3,704,593,381
96,916,769,558 3,147,439,542 |,
3,147,439,542 1,100,342,293

where X, is the estimator of covariance matrix.

For the last-stage, we estimate the parameters of
equation models (25). From (22) to (24), we obtain

o, ] [ 0.1967
a,| |-0.2607
oy | | 02356
ay | |-0.0666
el e o
U S T i = =] 302635
B | 103797
7o ll0msss ] | -3.0592
By | | 03474
B | | 11750
£, | | 0.0009
B, | 15913

Y| 44505 7a] [ 44505
’?1 = ?’21 = 1.9577 g "}"1 =] }/22 - _I .9577 :
y31 1-5276 }/32 _1 ‘5276

and the estimators equation models (25) are
Yy =47.7816+0.1967x,,,, — 0.2607x,,,,

~1.6142wly,, +0.3797y,, —0.3355y,,
~4.4505+ il

Vo =30.2635+0.2356x,,,, — 0.0666x,,,,
—~1.6142wly.. +0.3474y,, +1.1750y,,
+1.9577 + 1,

Pii =-3.0592 + 0.0036x,,, +0.3796x,,,
~1.5742w}y,, +0.0009y,, +1.5%13y,,
+1.5276 + iy,

iy, = 0.9258w'i,,

&, = -0.2242w'i,,

fi,, = 0.4658W'ii,,,

P, =47.7816 +0.1967x,,,, —0.2607x,,,,
-1.6142w)y,, +0.3797y,,, —0.3355y,,,
+4.4505+ 1,

Vaiz = 30.2635+0.2356x,,,, — 0.0666x,,,
—-1.6142w'y,, +0.3474y, ., +1.1750y;,,
—1.9577 + iy,

Vap = -3.0592+0.0036x,,,, +0.3796x,,.,
—1.5742w'y,, +0.0009y, , +1.5913y,,,
-1.5276 + i1y,

fi,, = 0.9258w'i,

By, = -0.2242wW!iL,,

i, = 0.4658wW'i1,,,

where 4, are the estimate values for residual errors

as given in Table 2.

6 Conclusion

In this paper, we are motivaied to develop
simultaneous equation models for fixed effect panel
data with one-way error component by means of
3SLS solutions, especially for general spatial.

The numerical approximation estimators of
parameter models are obtained by means of
concentrated  log-likelihood  formulation with
method of forming sequence. In this paper, we use
the increasing values 0.01.

The closed-form estimators are obtained by
means of feasible generalized least squares-three-



stage least squares (FGL.S-35LS) and they are called
the estimators of feasible generalized least squares-
multivariate general spatial three-stage least squares
fixed effect panel simultaneous models (FGLS-
MGS3SLSFEPSM). All estimators are consistent
estimators.

There is one limitation of this paper, we still use
the numerical approximation to find the estimators
of spatial autoregressive and spatial autocorrelation.
In future research, we encourage to find the closed-
form estimators of spatial autoregressive and spatial
autocorrelation. In addition, to develop models not
only for fixed effect but also both fixed effect and
random effect {mixed models).
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